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Abstract. We present a numerical calculation of the tunnelling time of electrons confined in 
double-barrier smctures performed by means of the so-called stabilization method, widely used 
in quantum chemistry. Prom the stabilization graphs we find the monance energy and its 
width. The method is especially appropriate for treating the case of double-barrier smctures 
(symmetric or non-symmetric) because it allows one to calculate separately the two different 
Nnnelling times (to the left and to the right of the quantum well) contributing to the total lifetime 
of a resonant level. We use the effectivemass theory. The behaviour of the tunnelling time 
under applied bias is also investigated and the results are compared with the ones obrained by 
two alternative approaches, the quasi-classical approximation and the transmission coefficient 
analysis, respectively. A good agreement between the three methods is obtained for the cases 
analysed. Finally, the stabilization method as applied here can be employed in the field of 
scanning tunnelling microscopy of absorbed atoms or molecules where a double-banier potential 
also serves as a model for the problem. 

1. Introduction 

The study of resonant tunnelling in semiconductor double-barrier structures (DBS) has been 
the subject of feverish activity since the pioneering work of Esaki and Tsu [ 11. These 
structures have properties that are of technological interest, such as negative differential 
resistance and bistability in current-voltage response. Moreover, they are also of interest 
in basic research because they can be used as a tool to investigate the fundamental aspects 
of the tunnelling process. To obtain an up-to-date critical view of the work performed in 
this field one can consult the review by Hauge and Stovneng [Z], and the recent review by 
Jauho [3]. We remark that resonant tunnelling phenomena also occur in scanning tunnelling 
microscopy, and the spectroscopy of absorbed atoms or molecules where a simple model of 
the problem gives a double-barrier-like potential configuration. In this last case the resonant 
levels are the corresponding atomic or molecular orbitals [4]. 

In recent yews a number of papers have been devoted to the study of time scales 
for coherent tunnelling processes in different semiconductor structures. For example, the 
calculation of lifetimes of Stark resonant levels confined in a single quantum well (QW) has 
been performed using the effective mass theory [ 5 4 ] .  Complicated effects that influence 
the escape rate in these rather simple structures, like r-X mixing or the details of band 
structure, have been worked out by other methods, namely the tight-binding method [9, IO] 
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and the use of five k . p theory [ I  11, respectively. Recently, the resonant energy and the 
width in symmetric double-barrier structures have been calculated in the simple effective- 
mass picture, even in the case of an applied electric field [E, 131. In particular, in the case 
of a general DBS it is important to know what are the tunnelling probabilities associated 
with the two ways of escaping (to the left or to the right of the quantum well) that exist 
for the wavefunction of the quasi-confined level. On the other hand, many expressions 
obtained in the framework of elastic scattering theory require a knowledge of the partial 
elastic widths of these two channels of escape [14]. Up to now, when those magnitudes 
are needed a quasi-classical approximation is usually employed while the total lifetime 
is easily calculated by using a hansmission coefficient analysis. In this paper we show 
that the stabilization method presents a unified scheme which allows one to calculate the 
total lifetime of electrons confined in the QW of DBS, as well as the magnitudes of their 
corresponding two partial tunnelling times. The energies of the resonant levels are calculated 
as well for a series of different symmetric and non-symmetric DBS. The paper is organized as 
follows. In section 2 we describe the stabilization method, in section 3 we write the formulae 
applicable in the quasi-classical approximation, in section 4 we analyse and compare the 
results obtained using the different approaches for some structures of current interest, and 
finally, in section 5, we summarize the present work. 

J A Port0 et a1 

2. The stabilization method 

The stabilization method (SM) was developed in quantum chemistry as a general procedure 
for calculating resonance properties and wavefunctions for problems involving electron- 
atom and electron-molecule scattering [ 151. The basic idea is to diagonalize the Hamiltonian 
in a basic set containing a scale factor q. The resulting eigenvalues as a function of 0 form 
what is called a stabilization graph (SG), which presents a characteristic pattern of avoided- 
crossings between stable and unstable eigenvalues, where the former correspond to the 
eigenvalues representing resonances and the latter to discretized continuum states. Macias 
and Riera [ 161 presented an explanation of why the SM works in the detection of resonances. 
Briefly, the simple explanation is the following. The wavefunction is well described for 
energies near the resonant energy and changes in the basis scarcely affect it. Therefore, the 
eigenvalues which are near the resonant energies are stable against variations in the basis 
set. In contrast, eigenvalues far from the resonant energy feel the modifications of the basis 
set because their wavefunctions are not well described in their greater part. 

Of particular interest is the approximation developed by Simons [17], who was the 
first to propose that the values of the resonance position and its widths can be obtained 
directly from the SG. Simons used the assumption that the avoided-crossings that are typical 
in those graphs can be considered as equivalent to a linear crossing of the energies of two 
‘uncoupled’ states, a stable and a ‘continuum’ one; in this way he was able to derive very 
simple expressions for both the resonance position and its width. depending just on the 
slopes of the stable and continuum eigenenergies. Thus, the resonance energy is just the 
diabatized crossing point between the stable and unstable eigenvalue. 

With regard to the resonance width r, Borondo and Sanchez-Dehesa [7], and M a c h  
and Riera [18] re-derived the Simons’s formula by employing the standard golden-rule-type 
formulae yielded by the Feshbach [19,20] formalism: 
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where the interaction term V is taken to be half the energy splitting at the pseudo-crossing 
( q  = vi) of the SG and p ( E )  is the density of the ‘continuum’ states. If E. is the discretized 
continuum eigenvalue interacting with the stable one, a good approximation for p ( E )  [ 181 
is 

This formula is applicable if neither E,+] nor E,-] is contaminated by other stable 
eigenvalues. The accuracy of (1) and (2) for calculating r has been studied for different 
physical problems 17.181. 

At this point let us stress that the main point of the stabilization method is to generate 
the stabilization graph of the potential problem. This graph shows the behaviour, as a 
function of a non-linear parameter, of the eigenvalues of the Hamiltonian whose quasi- 
continuum has been discretized. This discretization is achieved in the standard formulation 
of the method by a scale factor q introduced in the basis set. Nevertheless, it can also 
be achieved by increasing the number N of localized wavefunctions employed in the 
Hamiltonian diagonalization, or by using any other suitable means which produce similar 
effects. For example, in the study of the quasi-bound spectra of quantum wells under 
an electric field [7] the discretization of the continuum outside the well is achieved by 
surrounding the system by infinite walls placed on both sides of the system (well and 
barriers), being the parameter the distance L between the walls. The SG was made up by 
varying that parameter; the energy levels for each L were calculated by diagonalizing the 
corresponding Hamiltonian. Afterwards, the resonance and its width were calculated from 
the graph following the above-mentioned guidelines. 

2.1. The double-barrier structure under an applied bias 

The calculation of the quasi-bound states localized in an idealized double-barrier structure 
is an exactly solvable problem. One can follow the standard method by matching the 
wavefunction and its first derivative at the interfaces. The final equation has a non-trivial 
solution only if the determinant of the coefficient matrix vanishes. All the roots obtained 
with this condition have negative imaginary parts; they have the form E = Eo - ir/2, 
where Eo and r correspond to the quasi-bound-state energy level and the resonance width, 
respectively. This procedure has been employed in 1121, for the case of zero bias, and [13], 
in which the applied bias case is also studied but the linear dependence of the potential 
is extended to the collector and emitter sides. The main drawback of these calculations 
is that the total lifetime, rt, is obtained and, therefore, it is not possible to separate the 
contribution of the two different times, q and r,, corresponding to the two possible ways 
of decay, through the left or right barrier, respectively. In what follows we apply the SM 
to this system and show how this method is especially appropriate to treat this problem 
because the two different times rf and r, can be calculated separately. 

Following previous studies we reduce the initially three-dimensional problem to a one- 
dimensional effective-mass equation. We place the DBS between two infinite barriers placed 
at z = 0 and z = L1+ bl +U) + b2 + Lz. The parameters involved, and the potential profile 
to solve, are shown in figure 1. We use an envelope-function approximation to describe the 
wavefunction of the particle confined in the structure 
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Figure 1. Potential diagram of a double- 
banier svuctwz under an applied bias. The 
parameters are described in the text. 

where un.0(r)  is a Bloch state of zero wave vector and band index n; $(z) is the envelope- 
function solution of the Schrodinger equation (in au): 

"* + (VO - ( z  - L i ) F ) $  = E$ LI 4 z 4 LI + bl 
2m* dz2 

1 d2* 
2m* dz2 - -- + (Vo-  ( Z  - L I ) F ) $  E @  L I  +bi  + w < z 6 Li +bl + w+bz 

' d2* Vb$ = E$ LI + bi + w +bz < z < LI +b l  + w + b2+ L2 2m" dz2 

where F is the electric field along the z direction, which is related to the applied bias, V,, 
by 

vb 

bi f w + bz' 
F =  (5 )  

The banier height VO is related to the alignment of the conduction band profiles at the 
r point of the Brillouin zone; VO = AEc. The system described by (4) has strictly bound 
states and has been solved by using a set of cubic-spline basis functions [21]. The advantage 
of this procedure is that it can be easily extrapolated to treat the cases of more realistic 
potentials in which the potential profile changes as a consequence of charge effects; then, the 
Poisson equation together with the Schrodinger equation have to be solved simultaneously. 

In (4) the two parameters employed to get the corresponding SG are (i) the distance L I  
to the left-hand infinite banier to obtain TI, and (ii) the distance L2 to the right-hand infinite 
barrier to get T,. For example, in figure 2 we show the SG from which T, is calculated 
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for the case of a (Ga, In)As-fAl, 1n)As DBS under an applied bias V, = IOOmeV and 
parameters b, = 70A, w = 60A, bz = 40A. m* = 0.041, V, = 5OOmeV. In this graph the 
energy levels for each Lz are the eigenvalues obtained by diagonalizing the corresponding 
Hamiltonian given by (4). Looking at this graph it is possible to distinguish different 
kinds of levels according to their dependence on Lz. First we have those which present a 
completely flat behaviour (broken lines). They correspond to states fully localized on the 
emitter side, and have hold no interest at all. Second we have those which exhibit a certain 
dependence on LZ (full curves). These levels are the interesting ones, and their dependence 
allows us to know the spatial region where they are mainly localized. The ones with the 
lineal dependence - l /Li  indicate that they are localized on the collector side; they belong 
to the continuum of the right side, which has been discretized. Finally, we have the levels 
localized inside the quantum well, the resonant levels, whose energies do not change with 
LZ but present avoided crossings with the levels outside the well at certain values of the 
parameter. At these values the two energies are close, the levels interact and the two linear 
combinations of  states, bonding-antibonding, are formed. This effect appears in the graph 
as an avoided-crossing region. This effect is shown in figure 3, where we plot a comparison 
between the wavefunctions of the same energy level obtained at two different values of the 
parameter Lz;  one corresponding to a plateau (Lz = lOOA) and the other at the crossing 
point Lz = 138.2A. Notice how the first one is the wavefunction associated with the 
quasi-confined level (full curve) while the one exhibiting huge oscillations out of the well 
(broken curve) indicates its combination with a discrete state of the right-hand part of the 
DBS. 
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Figure 2. Stabilization gaph of the two quasi-bound 
stales allowed in a DBS based on (Ca,ln)As/(Al.In)As 
(see lexl). The eigenvalues of (4) are npresented 
against the separation Lz between the right barrier and 
the infinite barrier put in the collector side, The broken 
lines correspond to energy levels confined on the leR 
side of the structure 

Figure 3. Comparison of the first monant wavefunc- 
tion at two different values of the parameter L2 for the 
case mnrideyd in figure 2. The full curve corresponds 
to L2 = IOOA (non-crossing -) and the broken C U N e  

corresponds to L2 = 138.2 A (al the crossing point). 
The potential profile is also plotted. 

Now, the energy of one quasiconfined level, E,, as well as its lifetime can be obtained 
directly from the SG following the above-mentioned method. Briefly, this procedure consists 
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of selecting two energy curves, El and E2, which show an avoided crossing in the SG. They 
can be considered as solutions of a 2 x 2 secular problem whose diagonal elements are 
E & , )  and E&), the ‘uncoupled’ states, and V ( L )  their interaction, where L is one of 
the above-described parametel;s ( L I  or Lz). This interaction is assumed to be localized near 
L = L,  (the crossing point) and goes to zero in the regions where E ,  = constant, and 
Ec - 1/L2.  The solution to this problem is 
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To determine L, we tabulate the function R(L) = ;(El - E2) and find its minimum. 
Therefore at L ,  

El.2 = +(El + Ez) & Vc E 2z Vc (7) 

where V, = V ( L , )  = ; (E1  - E*). It is a good approximation to consider E, = E [7] as 
the energy of the resonance. An alternative is to take E ,  as the energy value corresponding 
to regions of zero slope in the SG. 

With regard to the lifetime, we calculate it in the complete coherent limit. We disregard 
any incoherent scattering process [ 141. In the one-dimensional potential under study one can 
distinguish two independent and spatially separate channels of decay for the quasi-bound 
state in the quantum well of the DBS, to the left (I) and to the right (r), whose corresponding 
tunnelling times are q, = f i / r ~ , ~  [22], where rl,r is given by ( I )  and (2) .  Finally, the total 
elastic width is rt = rl + rr and the decay rate of the resonant level is [I41 

We point out that, in the cases studied, we treat with a simpIe non-degenerate isolated 
long-lived Breit-Wigner resonance. For this reason, it is possible to use the abovementioned 
equations for the energy width and the total lifetime in terms of the partial widths and partial 
tunnelling times, respectively. 

In order to compare the accuracy of the results obtained with this method we have 
performed calculations for the same smctures using a transmission coefficient analysis. In 
previous papers 1231, Price has shown how the Lorentzian half-width at half-maximum of 
the tr?nsmission peak A E  is related to the combined lifetime rt for tunnelling out of the 
well region through either of the enclosing barriers by 

h - = 2 A E .  
5, 

We have made this analysis by calculating A E  with the formalism developed in [XI .  The 
results obtained by both methods are similar, as we will show in section 4. We point out 
that the similitude of both methods comes ftom their coherent picture of the problem. 

Another way of giving a comparison of our results is to adopt a different point of 
view. One can look at the problem as a classical particle (the electron) going back and 
forth inside the well, with a non-negligible probability of crossing the barriers given by 
the transmission coefficient of the corresponding barrier. This is the method used in the 
quasi-classical approach, which we describk below. 
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3. The quasi-classical approximation 

The quasi-classical approach (QA) is widely used to calculate separately the magnitude 
of the tunnelling times on both sides of the QW sandwiched between barriers. The QA 
has been used to establish the order of magnitude of the charge accumulation inside the 
QW [25-271. In practice, one has to take care of the condition for the quasi-classical 
approximation to be applicable (see for instance [ZS]). For the case of non-applied bias 
the transmission coefficient, F,,, through a barrier of length bl,r can be calculated using the 
Wentzel-Kramers-Brillouin (WKB) method (in au): 

 TI,^ = Fexp[-261.,J2m*(Vo - E,)] (9) 

where the prefactor F denotes the efficiency of the tunnelling process. The relation to the 
tunnelling time is 1291 

where U, = (2E,/m*)*/' and w is the nominal QW width. The coefficient of F,r represents 
the number of times per second that the electron anives to the corresponding barrier (left or 
right). Therefore, TI-' (5;') represents the rate of decay of the stored charge into unoccupied 
emitter (collector) states. For the case of applied bias 

where the upper (lower) sign corresponds to the case of transmission through the left-hand 
(right-hand) barrier considered as emitter (collector). F is the electric field defined by ( 5 )  
and the resonant level is referred to the middle of the QW. In the formulae above one can 
use a simplified version of the WKB method with F = 1 [30] and keep (1 1) as it stands. 
With these assumptions a good order of magnitude for the tunnelling time is found, as we 
will discuss in section 4. Nevertheless, one can get an improvement of those values if one 
takes into account the abruptness of the potential we work with, and the wave nature of the 
electrons. The first effect introduces a different factor in the transmission coefficient given 

F E  16(Em/V0)(1 -&/W. (12) 

by [281 

On the other hand, by considering the wave nature of the electrons we slightly modify (1 I), 
introducing a larger length of the well given by 

weff = w + di + d, (13) 

in order to take into account the penetration length dl (4) of the wavefunction in the left 
(right) barrier which are (in au): 

dl.r = z = [ ~ ( V O  - Ere$ * F w / ~ ) ~ ' *  * (VO - Ere$ rt Fbl,, f F w / ~ ) ~ / ' ] - '  

where the upper (lower) sign is for the penetration length dl (dJ in the left-hand (right-hand) 
barrier close to the emitter (collector) side of the DBS. 

(14) 
3 Fbl,r 
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4. Results and discussion 

At this point let us remark on the simplifications we have used in the calculation with the 
above-explained models. First, we avoid any position dependence of the effective mass 
and effects of non-parabolicity in the conduction band dispersion. These effects have been 
analysed in these structures by other authors [24,31,32]. With regard to the effective-mass 
differences it has been proved that they produce observable effects in the measured currents 
only in the case where such differences are very high: for example, tunnelling from the r to 
X minima [32]. For the class of semiconductors which form the DBS to be studied, two of us 
[24] have proved that the resonant energy values obtained using a position mass dependence 
and non-parabolicity are practically the same as those obtained using just a homogeneous 
mass and without including the non-parabolicity (differences are of < 2 meV). 

4.1. Symmetric and non-symmetric (Ga, InjAs-(Al, InJAs double-barrier structures 

We use a Gao.4,Ino.spAoAla.48In0,~*As-based DBS as the material to compare the tunnelling 
times obtained by the SM with those obtained by the other methods: the Tc analysis and 
the QA, respectively. This system has a large conduction-band offset [33] (VO = 500meV) 
and it is capable of confining two resonant levels in the Qw. We take as the homogeneous 
mass mk = 0.041, corresponding to the Gao.4~Ino.53As well 1341 due to the above-explained 
reasons (see also [24]). Three different geomehcal configurations of these semiconductors 
have been studied. The three have the same QW width (U, = 60A) and differ in the length 
of the surrounding barriers: two have a symmetric configuration with bl = bz = 40A and 
70A, respectively, and the non-symmetric one has bl = 70A and bz = 40A. In table 1 we 
show the values obtained for the total tunnellin escape time of the first resonant level Era.! 

the column QA we first calculate the two separate times 7,, 71 by means of the formulae 
explained in section 3, using T given by (13) and the effective width  we^ (14). With 
regard to the SM values, the two times rr and 7, are calculated separately and afterwards the 
formula (8) is applied to calculate the value of rt that appears in table 1. Finally, in the TC 
analysis A E  is calculated as usual (see [24] for details) and afterwards the formula (9) is 
employed. Looking at table 1 one can conclude the equivalence of the three methods. We 
obtain very similar results with the SM and the n: analysis because of the reasons pointed 
out in section 2. Moreover, the results obtained with the QA are similar to those obtained 
with the SM or TC analysis because the energy difference Vo - E,,,(Vb = 0) = 383.0meV 
is large, where the formulae of section 3 are in their range of applicability. Nevertheless, 
when the bias (vb)  grows, slight differences between the results obtained with the QA and 
the other two methods appear due to the decrease of the energy difference (VO - Em) .  In 
figure 4(a) and (b) we plot the results obtained for r, as a function of the applied bias vb.  
For the sake of comparison we have also included in these figures the values obtained by 
the QA using 3 = 1 and the nominal width w = 60A in ( I  1) and (12) (broken curve). As 
can be seen, using this approach the correct order of magnitude is reproduced, although the 
calculated values are a factor two higher than the results calculated with the SM and the TC 
analysis. 

For the non-symmetric structure, the 70-6WOA DBS. we show in table 2 the 
comparison between the tunnelling times obtained for the first resonant level Erer,l(Vb = 
0) = 117.0meV, whose calculation is performed in similar conditions to those explained 
for the symmetric sample. Now, for clarity we separate the three tunnelling-times involved. 
In figure 5 we plot these same magnitudes as well as the comparison with the QA in the 
same condition as in figure 4(a) and (b). The conclusions are similar to those discussed 
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for the symmeh.ic 4W5040A and 70-60-70 1 structures. To obtain the values shown in 
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Figure 4. ( a )  Calculated total tunnelling time q 
a g a h l  applied bias Vb. for the first monant state pf 
a symmetric double-barrier structure (404&40A) 
based on (Galn)Asf(Al.In)As. The full curve was 
obtained by the stabilization method and the circles 
by Ihe transmission coefficient analysis. The broken 
curve corresponds to the quasi-classical approach 
using F = I and the nominal well width in formula 
( I  11 (see text). (b) The same plots for the 70-6k 
70 A structure. 
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Table 1. Com~arison between the total tunnellinz time rt (in 0s) of the first resonant level 

-200 -100 0 1 00 200 

Vb ( meV 

Figure 5. Calculated tunnelling times q. r, and q against 
applied bias Vb. for the first resonant state of a non- 
symmetric double-barrier structure (70-50-40A) based on 
(Ga,ln)As/(Al,ln)As. The full c w e  and circles were 
obtained by the stabilization method and the transmission 
coefficient analysis, respectively. The broken cume 
corresponds to the quasi-elassical approach using 3 = 1 
and Le nominal well width in formula (1 I )  (see text). 

~. . .  
calculated by means of the stabilization method (s i ) ,  the Vansmission coefficient (TC) analysis, 
and the quasi-classical approximation (OA) for two svmmetric (Ga.In)As/(AI.ln)As-based DBS at 
differenl applied bias. 

4MWO A 70-60-70 

Vb (MeV) SM x QA SM lC QA 

0 0.538 0.539 0.539 25.2 25.3 25.4 
40 0.536 0.533 0.536 24.6 24.7 25.1 

100 0.504 0.506 0.522 22.0 22.2 23.5 
~ 

previously for the symmetric DBS. We remark that the total tunnelling time is controlled by 
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the thin (right-hand) barrier, as could be expected. For the range of investigated bias, the 
tunnelling time for the thin barrier is at least an order of magnitude shorter than that for the 
thick (left-hand) barrier. 

J A Port0 et a1 

Table 2. Values (in ps) of the different tunnelling times at several applied voltages for the 
first resonant level in a non-symmevic 70-60-40A (Ga,In)As/(AI.ln)As-based DBS calculated 
by means of the aabilization method (SM) and the quasi-classical approach (QA), The time rc 
obtained by the transmission coefficient (x) analysis is also included (see text). 

SM QA Tc 

vb ( m v )  ll 2, rt 9 7, rt rt 

-100 26.1 1.68 1.58 32.1 1.31 1.26 1.57 
-40 39.0 1.27 1.23 42.4 1.17 1.14 1.23 

0 50.4 1.07 1.05 50.8 1.08 1.06 1.05 
40 68.0 0.91 0.90 60.6 0.99 0.98 0.91 

100 114 0.73 0.73 78.6 0.88 0.87 0.73 

Table 3. Comparison between the values (in PE) of the total lunnelling time of the first wonant 
level calculated by means of h e  s t a b i l i o n  method (SM) and the quasi-classical approach (QA) 
for an AIAdGaAslAIAs-bued DES for two different bader heights Vo. The data in the column 
marked 'Wp." are taken from figure 5 of I351 for T = 20K. 

Vo = 960 meV Vo = 13M)meV 

bl(.&(Akfd) SM PA SM QA Exp. 
28-52-28 9.46 9.39 47.9 48.0 - 60 
34-62-34 42.3 42.3 29.5 295 - 160 
40-62-40 191 191 1810 1810 -200 

With respect to the second resonant level, &.2(vb = 0) = 418.7 meV we have found 
a tunnelling escape rate two orders of magnitude lower than those obtained for the first 
resonance: for example, at v b  = lOOmeV (the SG is represented in figure 2) the tunnelling 
times are 0.04, 0.04 and 0 . 0 6 ~ s  obtained by the SM, TC and QA, respectively. Note that 
the differences between the results calculated with the QA and the other two methods (SM 
and TC) are larger for the second resonance than for the first one, due to a lower energy 
difference (VO - Em.2). 

4.2. Symmetric AIAs-GaAs-AlAs double-barrier structures 

These kind of smctures have been analysed by Tsuchiya and co-workers (351 by means of 
time-resolved photoluminescence spectroscopy. By analysing the behaviour of the decay 
time of the photoluminescence peak with temperature they are capable of determining the 
mechanism responsible for that decay: a tunnelling escape process or a radiative electron- 
hole recombination. They perform experiments with a series of symmetric samples with 
the same QW width (U, = 62A) but different barrier lengths (28A < bl = bz < 62A). 
They found that for barriers thinner than 40A the decay times are almost independent of 
temperature, which indicates their non-radiative origin. These times can be compared with 
the calculated escape rates by tunnelling using the SM or the QA. In table 3 we give those 
numbers calculated using m* = 0.069 and different barrier heights to consider different 
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proposals for the band-offset rule (1360meV for the Dingle rule [36] and 960meV for the 
Miller rule 1371). It is shown that both approaches give similar results for the analysed 
structures. The better agreement obtained by the Dingle rule does not necessarily imply 
that for GaAdAlAs interfaces the conduction-band discontinuity is - O.SAE,,  where A E ,  
is the band-gap difference at the r point. On the contrary, it is currently accepted that the 
experimental value of that parameter is closer to - 0.65AEp [38]. On the other hand, the 
agreement between the calcutated results and the experimental measurements corresponding 
to the samples with non-radiative behaviour (b1.2 .e 40A) can be considered satisfactory if 
one keeps in mind the uncertainty in the sample parameters as well as the effects, which 
are not considered here, that the inelastic events might play in these structures. 

5. Summary 

We have introduced the stabilization method of quantum chemistry to calculate in a 
coherent manner the resonant levels and the lifetimes of an electron in a Qw of a double- 
barrier resonant structure under an applied elecaic field. We have applied the method to 
(In, Ga)As/(In, A1)As-and GaAdAIAs-based double-barrier structures and the results have 
been compared with those obtained by two other methods of analysis: (i) the transmission 
coefficient analysis, and (ii) a quasi-classical approach. We have shown that the three 
methods give practically the same results for the samples investigated. Compared with 
the transmission coefficient analysis, the stabilization method has the advantage of giving 
us separately the two different tunnelling escape rates contributing to the total lifetime. 
Compared with the quasi-classical approach, it does not 'have its fundamental limitations. 
On the other hand, the comparison of the results obtained with the experimental ones 
available for the GaAs/AIAs structure indicates that the calculation describes satisfactorily 
the order of magnitude of the tunnelling times, and the discrepancies can be due either 
to non-elastic processes not considered in the calculation or to uncertainties in the sample 
parameters. 

Finally, the stabilization method can be easily extended to treat the case of absorbed 
atoms or molecules in the field of scanning tunnelling microscopy, where similar double- 
barrier potentials describe the problem. The method is also capable of some improvements 
to analyse more realistic structures, where the charging effects should be considered by 
properly solving the Poisson and Schrodinger equations simultaneously. 

Acknowledgments . 
We would like to thank F Flores for useful discussions. This work has been partially 
financed by the Comisi6n Interministerial de Ciencia y Tecnologia of Spain under Contract 
Mat 91-0419 and by the Acci6n Integrada hispano-francesa fIF-169. 

References 

[ I ]  Esaki L and Tsu R 1970 /EM J.  Res. Dev. 14 61 
(21 Hauge E H and Stonvneng 1 A 1989 Rev. Mod Pkys. 61 917 
[3] lauho A P 1992 Hoc Carriers in Semiconductor Nonostructures ed I Shah (New York: Academic) p 121 
[4] Mizutani W, Shigeno M. Kajimura K and Ono M 1992 Ultramicroscopy 4 2 4  236 
[SI Austin E 1 and Jams M 1985 Phys. Rev. B 31 5569 



898 J A Port0 et a1 

[6] Austin E J and Jams M 1985 Appl. Phys. Left. 47 274 
(71 Borondo F and Sanchez-Dehesa J 1986 Phys. Rev. B 33 8758 
[E] Ahn D and Chuang S L 1986 Phys. Rev. B 34 9034 
[9] Schultz P A and Goncalvez da Silva C ET 1987 Phyr Rev. B 35 8126 

[IO] Brey L and Tejedor C 1987 Solid Stare Commun. 61 573 
[I I] lassnig R 1987 Solid Stale Commun. 61 577 
[I21 Bahder T B. Morrison C A and Bruno J D 1987 Appl. Phys. Lcrr. 51 IO89 
[I31 Peng J P. Chen Hand Zhou S-X 1991 Phys. Rev. B 43 12042 
1141 BUttiker M 1988 IBM 1. Res. Dev. 32 63 
[IS] Taylor H S 1970 Ad". Chem Phys. 18 91 

Hazi A U and Taylor H S 1970 Phys. Rev. A 1 I IO9 
[I61 M a c h  A and R i m  A 1985 1. Physique 46 535 
1171 Simons J 1981 1. Chem Phys. 75 2465 
[I81 M a c h  A and Riera A 1989 Chem Phys. Len. 164 359; 1992 1. Chem Phys. 96 2877 
[I91 Feshbach H 1958 Ann. Phys., NY 5 357 
[20] Macins A and R i m  A 1984 Phys. W I .  103A 377: 1985 Chem. Phys. Left, 117 42, 1986 Europhys Lett 2 

[21] Shore B W 1973 I Chem. Phys. 58 3855; 1973 59 6250; 1975 63 3935 
[U] Galindo A and Pascud P 1990 Quonfum Mechmicr (Berlin: Springer) 
[ a ]  Price P 1 1988 Phys. Rev. B 38 1994; 1986 Suprrlalt. Micmstmct. 2 593 
[24] Cury L A and Portal J C 1991 Phys. Rev. B 44 6224 
[25] Goldman V J, Tsui D C and Cunningham J E 1987 Phys. Rev, Lett, 58 1257 
[26] Sheard F W and Toombs G A 1988 AppL Phys. Lett. 52 1228 
[27] Young J F, Wood B M, Ares G C, Devine R L S, Liu H C h d h e e r  D, Buchanan M, SpringUlorpe A J 

and Uvldeville P 1988 Phys. Rev. Lett. 60 2085 
[28] Landau L W and Liftshilz E M 1976 Quuntum Mechmics 3rd edn (Oxford: Pergamon) 
[29] Weil T and Vinter B 1987 Appi. Phys. .kit. 50 l2Sl 
[30] Jxos M 1989 Physics and Appliediom of Semiconductor Micmstrucfures (Oxford: Clamdon) 
[31] Ekenberg U 1989 Phys. Rev. B 40 7714 
[32] Ohno H. Mendez E E and Wang W I 1990 Appl. Phys. Lett. 56 1793 
[33] People R. Wccht K W, Alavi K. and Cho A Y 1983 Appl. Phys. Lett. 43 118 
[34] Alavi K. Aggamal R L. and Groves S H 1980 Phys. Rev. B 21 131 1 
1351 Tsuchiya M, Masusue T and Sakzki H 1987 Phys. Rev. Len. 59 2356 
I361 Dingle R. Wiegmann W, and Henry C H 1974 Phys, R e t  Len 33 827 
I371 Miller D A B. Chemla D S. Damen T C Gossard A C. Wiegmann W, Wood T H, and Burms C A 1984 

[381 Yu E T. McCaldin J 0 and McGill T C 1992 Solid State Physics 46 ed. H Ehrenreich and D Tumbull (New 

35 I 

Phys. Rer.. Lett. 53 2173 

York: Academic) p I 


